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Abstract

A method for controlling spiral waves in excitable
media is proposed. Applying suitable weak external
forcing to the systems´s slow variable, we can suc-
cessfully control spiral waves to a desired new pat-
terns. The effectiveness of the control law is illus-
trated via numerical simulations on a 2D model.
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1 Introduction

A broad attention has been devoted from many years
to the study of pattern formation in distributed sys-
tems, due to its importance in the fields of biology,
chemistry, physics and ecology [1-3]. A particular in-
terest is related to the case of reaction-diffusion equa-
tions in two-dimensional excitable systems, which
can be used to model the electrical activity of bi-
ological tissues-nerve fibers [1], cardiac muscle [4,5],
brain tissue [6] and to reproduce a lot of main phe-
nomena experimentally observed [2,6,7].

In one-dimensional media, with parameters in
the right range, excitable media respond to strong
enough stimulation by propagating a soliton-like
pulse at steady speed, with steady profile. Impulse
propagation along nerve axons is a well-known ex-
ample of this phenomenon [1,2]. In two-dimensional
media spiral waves can emerge with both appropri-
ate initial conditions and parameters [8,9]. Exam-
ples include waves of chemical activity in Belousov-
Zhabotinsky (BZ) reaction [10], electrical activity
in cardiac tissue [4,5], aggregation of starving slime
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mold amebae Dictyostelium discoideum [11], and
catalytic reactions on platinum surface [12].

In some cases spiral waves and propagating
pulses are undesirable because of their harmfulness.
For example, spirals in cardiac muscle play an essen-
tial role in heart diseases such as arrhythmia ven-
tricular fibrillation, the major reason behind sudden
cardiac death [4,5]. Therefore, control of nonlinear
waves in excitable media is of much practical interest.
The control of pattern formation has attracted much
attention not only in excitable media but also for the
potential applications in other fields. For example,
the method of directional quenching has been used to
control the microphase separation of diblock copoly-
mer [13]. It was also found that the geometric size of
the system can be useful in controlling the formation
of optical patterns [14]. Moreover, with the rapid de-
velopment of nanotechnology, pattern formation now
can be controlled at nanometer scale [15] resulting in
new surface and bulk nanostructured materials with
unique or superior properties.

Proposed methods for controlling nonlinear
waves in excitable media comprised feedback [16-18]
and non-feedback methods [19-20]. Recently, Osipov
and Collins [19] have proposed a general mechanism
for suppressing non-steady state motions — propagat-
ing pulses, spiral waves, spiral-waves chaos — in ex-
citable media. This approach is based on two points:
(1) excitable media are multistable, and (2) travel-
ing waves in excitable media can be separated into
fast and slow motions, which can be considered in-
dependently. Osipov and Collins [19] showed that
weak impulses can be used to change the values of
the slow variable at the front and back of a trav-
eling wave, which leads to wavefront and waveback
velocities that are different from each other. This
effect can destabilize the traveling wave, resulting in
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a transition to the rest state.

In this work, we propose a model-based feed-
back control approach to control spiral waves aris-
ing in excitable media. We can successfully control
spiral waves to a desired new patterns by using a
small time-dependent external perturbation on the
slow system variable. This work is organized as fol-
lows: In the next section, the model used in this
study is described. The nonlinear dynamics arising
is such a systems is also presented. In Section 3, the
feedback control method is described. In section 4
we applied the proposed control method to control
2D excitable media. Finally, in Section 5 we close
this work with some concluding remarks.

2 The Mathematical Model

Consider nonlinear reaction-diffusion systems de-
scribing an excitable media given by [2,9]:

∂u

∂t
= Du∇2u+ F (u, v)

∂v

∂t
= Dv∇2v + εG(u, v) (1)

where u and v are the fast and slow variables. Du

is the diffusion coefficients for the fast variable and
Dv is the diffusion coefficients for the slow variable.
The excitability of a system may be defined by the
inverse of ε. Upon increase of ε the ability of an ex-
citable media to propagate waves usually is lost. The
functions F (u, v) and G(u, v) express local kinetics
of the variables u and v. In the following, without
lost of generality we consider Dv = 0. In fact, this
is the case for several biological systems since there
are nondiffusing variables [3,8]. Two variable mod-
els of the above general form are very common in
the study of excitable systems the Fitzhugh-Nagumo
(FHN) model being the most famous example. Vari-
ous models differ principally in the choice of the reac-
tion terms i.e., the functions F and G. Propagating
waves of excitation are frequently found in excitable
media such as BZ reagent [10] and in nerve cells and
cardiac muscle [1,4]. In two space dimensions these
waves commonly take the form of rotating spirals
[9]. In three dimensions these waves can take quite
exotic forms, but commonly the underlying spatial
structure is that of a scroll [9].

Consider the 2D case as given in Barkley [8].
No-flux boundary conditions are imposed on the do-
main boundary. The following local kinetics was con-
sidered,

Figure 1: Two-dimensional phenomena in excitable
media. Parameter values are given in text.

F (u, v) = u(1− u)

·
u− (v + b)

a

¸
G(u, v) = u− v (2)

The parameter values for the numerical simulation
are: a = 0.75, b = 0.01, 1/� = 50. An implicit
scheme inspired by Barkley [8] is used here in order
to integrate the equation (1) in the 2D case. Figure 2
shows a stable spiral wave generated with the above
kinetics and parameters. The spiral wave shown in
Figure 1 is stable in the sense that it is insensitive to
small noise impacts and to the slight change of the
initial condition and it persists forever unless some
external forces drive the system away.

Since the appearance of propagating pulses
and spiral waves in excitable and oscillatory media is
often an undesirable effect, leading to unpredictable
consequences for many applications [5, 12], there is
a need to develop effective methods to suppress and
control both propagating pulses and spiral waves.
This will be addressed in the next section.

3 The Control Method

To introduce an external force that can be used
for produced a weak external stimulus, Eq. (1) is
changed by,

∂u

∂t
= Du∇2u+ F (u, v)

∂v

∂t
= εG(u, v) + c (3)

where c is the control input in our feedback control
law. The external control input c is a plausible ma-
nipulated variable since it is more readily amenable
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to experimental manipulation. For instance, a peri-
odic, small amplitude, uniform electric field can be
used to initialize directed drift of spiral wave in ex-
citable media [16,18]. The light-sensitive variant of
the BZ reaction constitutes an experimental system
where the excitability of the medium can be manip-
ulated by the intensity of incident light [10].

Since there exists high uncertainties in the rate
constants and kinetic values and in order to not re-
quire much knowledge of terms that involves uncer-
tain parameters, for control design purposes we de-
fine a modeling error function as follows,

η = εG(u, v)

such that
∂v

∂t
= η + c (4)

Let vr be a desired reference and
•
vr be the time-

derivative of the desired reference signal. Consider
the inverse-dynamics feedback function,

c = −[η + τ−1c (v − vr) +
•
vr] (5)

such that

∂v

∂t
=

∂vr
∂t
− τ−1c (v − vr) (6)

It is noted that the dynamics (6) is stable and v →
vr asymptotically with τ c as the mean convergence
time. The closed-loop time constant τ c is a control
design parameter that can be chosen as the mean
time of dominant excitable frequency. The above
feedback function c can not be implemented just as
it is because the modeling error signal η is unknown,
then, the following observer is proposed to get the
estimate signal η,

∂η

∂t
= τ−1e (η − η) (7)

where τ e is the estimation time constant, which de-
termines the smoothness of the modeling error esti-
mation and can be chosen as τ e < 1

2τ c. From (4),
we know that η = ∂v/∂t− c. Hence

∂η

∂t
= τ−1e (

∂v

∂t
− c− η)

introduce the variable w
def
= τeη− v. Then, the esti-

mator (7) can be realized as follows:

∂w

∂t
= −c− τ−1e (w + v)

η = τ−1e (w + v) (8)

which is initialized as follows. Since η is unknown,
we have that η0 = 0. Therefore, w0 = −v0.

The practical computed control law is then
given by

cr = −[η + τ−1c (v − vr) +
•
vr] (9)

For consider possible physical restrictions in the mag-
nitude of external stimulus we include a saturation
function given by

creal = Sat(cCt ) (10)

where

Sat(cCt ) =

 cmin if c ≤ cmin
c if cmin < c < cmax
cmax if c ≥ cmax

thus, the control input is limited by cmin for the min-
imum external signal and cmax for the maximum ex-
ternal signal for the application of weak pulses on
a slow variable in excitable media. Positive values
of c destabilize the nonlinear wave by decreasing the
wave width, whereas negative values of c destabilize
the wave by increasing the wave width [19]. The
stability analysis of the closed-loop systems is be-
yond of the scope of this paper. However, this can
be borrowed with stability arguments from singular
perturbation theory and energy methods for distrib-
uted parameter systems [21].

4 Numerical Simulations
We have taken as a case studie the controlled transi-
tion from a stable spiral wave (Figure 2-a) to a new
spatiotemporal pattern given in Figure 2-f. Color
range form white at the minimum value of v and dark
at the maximum value of v. A sequence of wave pat-
terns after that the control law is activated is sum-
marized from Fig. 2-c to 2-h, in which it is show
the evolution from the initial pattern to the forma-
tion of a new spatiotemporal pattern. After some
time, the original pattern faded away and is replaced
by the reference pattern given in Figure 2-b. To il-
lustrate the temporal evolution of the pattern, we
shown the space-time diagram in Figure 3-a along
the positions in x, y (31, 21), (31, 36) and (31, 51) as
compared with the reference. Figure 3-b represents
the evolution of the control inputs in the same posi-
tions as Figure 3-a associated to the field v. It can
be seen from Figure 3-b that the control input no
require much effort to drive the system to a new pat-
tern given by the reference 3-b. Figure 4 shows the
corresponding sequence of control inputs for the se-
quence of the v-field given in Figure 3. It can be seen
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Figure 2: Sequence of wave patterns.

that in order to obtain a new pattern, the external
control input evolves towards a spiral pattern.

Generally, an external injection into a small
local region cannot essentially change the pattern of
Figure 1, the spiral remains the same with slight
deformation only. In realistic cases, it is impor-
tant to suppress spiral waves by injecting the con-
trol action in localized zones, however, this is be-
yond of the scope of this paper and will be presented
elsewhere. As described elsewhere [22], implantable
cardioverter defibrillators offer therapy by deliver-
ing electrical stimulation directly to the heart us-
ing relatively simple algorithms. In contrast, a pre-
ferred therapy for a reentrant arrhythmia would ex-
ploit the dynamics of the arrhythmia and use appro-
priately timed low-voltage pulses or perhaps even a
single pulse to collide with and annihilate nonlinear
waves. In addition to the use of electrical stimula-
tion to control arrhythmia, it is also well known that
strong electrical stimulation can induce fibrillation.
Electrical defibrillation of the heart by timely ap-
plication of a strong electric shock is currently the
only effective therapy for lethal disturbances in car-
diac rhythm. An interesting work was reported by
Woltering and Markus [23], who realized suppressing
turbulent waves. For an excitable media, they need
to apply a finite number of pulses. However, a signif-
icant difference is that the final state of the system is
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Figure 3: Time evolution of the u, v-field and control
input for three positions.

Figure 4: Pattern sequence of control inputs to pro-
duce the pattern given in Figure 2-f.
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an homogeneous steady-state of the nonlinear waves.

5 Conclusions
In this work, we have presented a feedback control
methodology based on modeling error compensation
to control spiral waves arising in reaction-diffusion
equations describing an excitable media. The con-
trol law proposed can be applied to general excitable
systems because it is independent of details of the
reaction kinetics and model parameters for a large
class of models. We have shown via numerical simu-
lations how spiral waves can be controlled to produce
new patterns via the introduction of weak external
electrical inputs. We hope that our work will be of in-
terest in some important practical applications, such
as controlling pattern formation in D. discoideum,
intracellular waves and ventricular fibrillation in car-
diac muscle.
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